江西财经大学兰州大学浙江理工大学

当前位置:考研资源网 > 考研备考  > 考研大纲

闽南师范大学2023研究生考试大纲:分析与代数

时间:2022-11-09     编辑:考研资源网  所属栏目: 考研大纲

闽南师范大学2023年硕士研究生入学初试自命题科目考试大纲

命题学院:数学与统计学院 考试科目名称:615分析与代数

科目说明(考试用具要求):无

一、考试基本要求

考试方法为笔试,考试时间为3个小时。考察学生对《数学分析》和《高等代数》的基本理论、基本方法和基本技能的掌握程度;考察学生抽象思维、逻辑推理和分析、解决问题的能力。

二、考试内容和考试要求

(一)数列极限、函数极限的定义及性质...方法的证明;数列极限、函数极限的各种计算方法

(二)连续性的定义及性质;连续性、一致连续性的证明及其应用

(三)微分和导数的概念及导数的几何意义;微分中值定理、Taylor公式、不等式的证明及导数在研究函数中的应用

(四)不定积和定积分的定义;积分中值定理、牛顿-莱布尼兹公式、定积分的计算、证明、应用及积分等式或不等式证明,广义积分的计算。

(五)数项级数收敛、发散和函数项级数一致收敛的判别法;幂级数的收敛半径、收敛域、级数和的求法及函数的Taylor展开

(六)平面点集;二元函数极限、连续的定义及计算;多元函数偏导数及全微分的定义、计算及有关的证明

(七)二重积分、三重积分的计算;两类曲线积分、两类曲面积分的计算;格林公式、高斯公式的应用

(八) 整除理论:包括整除性、带余除法、最大公因式、互素的概念与性质;因式分解理论:包括不可约多项式、因式分解定理、重因式、实系数与复系数多项的因式分解,有理系数多项式不可约的判定;根的理论:包括多项式函数、多项式的根、有理系数多项式的有理根求法

(九)行列式的定义、性质;行列式的按行(列)展开定理;行列式的计算方法;克莱姆法则

(十)线性方程组的解法——消元法;数域P上n维向量空间Pn及向量的线性相关性;线性方程组有解的判别定理;线性方程组解的结构及齐次线性方程组的解空间的讨论

(十一)矩阵的运算;初等变换与初等矩阵;可逆矩阵;分块矩阵;矩阵的秩;矩阵的等价(即相抵)、合同、相似;矩阵的可对角化问题

(十二)线性空间的概念;基、维数与坐标;基变换与坐标变换;子空间、子空间的交与和、维数公式、子空间的直和;线性空间的同构

(十三) 线性映射与线性变换的概念、运算;线性变换的矩阵表示;线性变换(矩阵)的特征多项式、特征值与特征向量;线性变换的值域与核;不变子空间

(十四)二次型及其标准型,正定二次型。欧几里得空间概念,正交基、正交变换、实对称阵的标准型。

三、考试基本题型和分值

满分150分,其中:

分析学部分90分,其中选择题12分,填空题18分,计算题50分,证明题10分;

代数学部分60分,其中计算题50分,证明题10分。

四、参考书目

1.华东师范大学数学系编,数学分析(上、下册)(第五版),高等教育出版社,2020年.

2.北京大学数学系几何与代数教研究前代数小组编,王萼芳、石生明修订《高等代数》(第五版),高等教育出版社,2019年.

原标题:闽南师范大学2023年硕士研究生招生简章

文章来源:https://yjsc.mnnu.edu.cn/info/1072/1971.htm

 
在线报名

上传格式要求:doc、docx、rar、zip、xls、xlsx(5MB)

确认报名
地区分站北京 河北 天津 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆
怀柔网站建设