江西财经大学兰州大学浙江理工大学

当前位置:考研资源网 > 考研备考  > 考研数学

考研数学三真题解读之高数高频考点总结

时间:2018-05-03     编辑:考研资源网  所属栏目: 考研数学

2018考研数学三的试卷题目对很多参加考试的考生而言,想起来还有些心有余悸。一方面,在难度系数上,题目的难度较历年真题有所提升;另一方面,在题目的设置上,整套题目更加注重对“三基”(即基本概念、基本理论、基本方法)和计算量的考查。

基于此,跨考教育数学教研室包新卓老师在本文将根据2018考研数学试卷上的真题,重点归纳高等数学(也称微积分)在数学三试卷中的考试情况。

高数在数学三的试卷中,分值占比为56%,即82分。题型设置如下:四道选择题(共计16分),四道填空题(共计16分),五道解答题(共计50分)。事实上,在此次数学一、二、三的试卷中,高数部分的题目明显侧重于对考生基本功的检验,这里所说的基本功,是指考生对考研数学中的所涉及的基本概念、基本理论和常规计算能力的把握。正是这种出题方式,对于一些复习想走捷径、处处想找套路的同学而言,无疑是一次深刻的教训。

接下来,我们要做的工作就是:根据学科,按题号顺序逐一分析2018数学三考题所涉及到的考试要点。

一、选择题(高数部分)

第(1)题考查的是函数在某点的可导性,与此同时,这道题也出现在了数学一和数学二的试卷中。若函数在某点可导,则函数在该点的左导数等于右导数。

第(2)题是根据已知条件,判断可积函数在某一点取值的正负。在知识点的归类上,此题属于导数的应用,值得一提的是:此题也出现在了数学二的试卷中。事实上,根据积分的几何意义和选项得出的单调性,可轻而易举地排除A和C这两个选项,之后再结合剩下选项得出的凹凸性,进而找到正确答案D。

第(3)题是比较题目中所给的三个积分值之间的大小关系。在知识点的归类上,此题属于定积分的比较。此外,这道题同时也出现在了数学一和数学二的试卷中。由于题目用到的是定积分的比较性质,故题目中略显计算量的是比较被积函数。

第(4)题是一道经济学应用题,此题属于数学三的专项考点。在知识点归类上,属于导数的经济学应用。

二、填空题(高数部分)

第(9)题是计算曲线在拐点处的切线方程,题目旨在考查导数的应用之切线和拐点,在难度上属于常规题,新意不大。

第(10)题是不定积分的计算,此题计算量一般,所涉及的考点为计算不定积分的两个常用方法:换元法和分部积分法。

第(11)题是二阶差分方程。此题在考研结束后,还引起了不少考生的争议。争议点不是在题目的难度上,而是在题目的选取是否超纲。考研大纲对于差分方程的要求是:要求考生会求解一阶差分方程。事实上,此题明面上是二阶差分方程,但考生如果熟悉二阶差分符号的定义,是可以将此方程化成一阶差分方程来求解的。

第(12)题是利用导数的定义构建微分方程,并结合初始条件找出相应的原函数,最后得到该函数的某一给定点的函数值。

三、解答题

第(15)题属于极限计算中的参数问题,作为常规题,难度设置中等。重在考查考生的基本计算能力。

第(16)题是一道二重积分的计算题,同15题一样,也是一道难度一般的常规题。

第(17)题是多元函数的极值问题,这道题同时也出现在了数学一和数学二的试卷中。此题的考查点在于考生是否会将题干中的实际问题转化为数学模型。

第(18)题属于幂级数求和的综合题。

第(19)题是数列的极限的计算与证明,用到的是单调有界原理,此题同时也出现在了数学一和数学二的试卷中。由于在往年的数学三的试卷中,此类题属于低频考点,故在之前的复习准备中,很多考生容易忽略此类题目的练习,进而出现丢分。题目中有计算量的是有界性和单调性的证明,而通过递推式来计算极限则非常简单。

在线报名

上传格式要求:doc、docx、rar、zip、xls、xlsx(5MB)

确认报名
地区分站北京 河北 天津 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆
怀柔网站建设