江西财经大学兰州大学浙江理工大学

当前位置:考研资源网 > 考研备考  > 考研数学

2017考研数学:行列式的计算(1)

时间:2016-09-19     编辑:考研资源网  所属栏目: 考研数学

  2017考研备考学习群:158299658

  行列式是线性代数的一部分,题目比较灵活,下面考研资源为同学们简单讲一下行列式的几种计算方法,希望同学们可以有所启发,弄清楚这种类型题。

  对于数值型行列式来说,我们先看低阶行列式的计算,对于二阶或者三阶行列式其是有自己的计算公式的,我们可以直接计算。三阶以上的行列式,一般可以运用行列式按行或者按列展开定理展开为低阶行列式再进行计算,对于较复杂的三阶行列式也可以考虑先进行展开。在运用展开定理时,一般需要先利用行列式的性质将行列式化为某行或者某列只有一个非零元的形式,再进行展开。特殊低阶行列式可以直接利用行列式的性质进行求解。

  对于高阶行列式的计算,我们的基本思路有两个:一是利用行列式的性质进行三角化,也就是将行列式化为上三角或者下三角行列式来计算;二是运用按行或者按列直接展开,其中运用展开定理的行列式一般要求有某行或者某列仅有一个或者两个非零元,如果展开之后仍然没有降低计算难度,则可以观察是否能得到递推公式,再进行计算。其中在高阶行列式中我是用加边法把其最终化为上(下)三角,或者就直接按行或者列直接展开了,展开后有的时候就直接是上或者下三角形行列式了,但有时其还不是上下三阶,可能就要用到递推的类型来处理此类题目了。总之,我们对于高阶行列式要求不是很高,只要掌握几种常见的情形的计算方法就可以了。

  有的时候,对于那些比较特殊的形式,比如范德蒙行列式的类型,我们就直接把它凑成此类行列式,然后利用范德蒙行列式的计算公式就可以了,但是,我们一定要把范德蒙行列式的形式,一阶其计算方法给它掌握住,我们在上课时也给同学们讲解了其记忆的方面,希望同学们课下多多做些练习题进行巩固。

  当然对于行列式我们有时可能还会用到克莱默法则和拉普拉斯展开来计算,只是这些都是些特殊的行列式的计算,其有一定的局限性,比如1995年数三就考到了一题用克莱默法则来处理的填空题。

  考研数学的考察范围虽然比较固定,但是对于许多2017考研的同学来说,复习起来并非很容易,所以考研资源特为广大学子推出2017考研OL乐学、全年集训、精品网课系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。同时,考研资源一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!

  推荐阅读》》》

  2017 考研 数学:不等式证明

  2017 考 研数学:中值定理证明

在线报名

上传格式要求:doc、docx、rar、zip、xls、xlsx(5MB)

确认报名
地区分站北京 河北 天津 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆
怀柔网站建设